De l'utilisation du lien suite/série en lieu et place de la transformation d'Abel.

Étude d'une série de fonction classique sans avoir recours à la convergence uniforme.

Cet article est sous licence CC BY-NC-SA-ND

1 Introduction

L'idée est d'étudier une série $\sum u_n$ à l'aide d'une suite v_n pour laquelle $v_{n+1} - v_n$ ressemble à u_n . Cela correspondrait dans une intégration par partie à remplacer une fonction f par g', ce qui simplifierait en effet la suite.

Nous allons illustrer les principes de travail par l'exemple de l'étude de $\sum_{n\geq 1} \frac{e^{inx}}{n^{\alpha}}$.

Nous verrons que la simple connaissance d'une asymptotique assez précise fournit de puissants résultats.

Rappelons le lien suite série :

Proposition 1

La série $\sum (u_{n+1} - u_n)$ converge \Leftrightarrow la suite u_n converge.

Si oui,
$$\sum_{n=0}^{+\infty} (u_{n+1} - u_n) = \lim_{n \to +\infty} -u_0$$
.

On va donc faire une asymptotique assez précise d'une suite v_n bien choisie pour obtenir les résultats souhaités pour $\sum u_n$, à savoir, convergence, étude du reste ou de la somme partielle, et, pour le cas de l'étude de $\sum u_n(x)$, étude de la régularité ou asymptotique de la série de fonction.

Pour le premier exemple, la suite v_n sera la suite u_n , mais l'exemple de l'étude de $\sum_{n=1}^{+\infty} \frac{e^{ix\sqrt{n}}}{n^{\alpha}}$ montrera que ce n'est pas toujours le cas.

Cet exemple sera abordé sur la fin, mais ce sera surtout le premier qui sera au cœur de cet article.

$\mathbf{2}$ Convergence

Proposition 2

$$\sum_{r=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}} \ converge \ si \ x \in \mathbb{R} \backslash 2\pi\mathbb{Z}.$$

De plus, en notant $R_n(\alpha)$ son reste de rang n, pour un tel x, $R_n(\alpha) \underset{+\infty}{\sim} \frac{u_{n+1}(\alpha)}{1-e^{ix}}$.

Pour $\alpha < 0$, en notant $S_n(\alpha)$ la somme partielle de rang n, $S_n \sim \frac{e^{ix}}{e^{ix}-1}u_n$.

Démonstration:

Posons u_n ou $u_n(\alpha) = \frac{e^{inx}}{n^{\alpha}}$ avec $\alpha > 0$.

Une asymptotique donne $\underbrace{u_{n+1}-u_n}_{\text{série convergente}}=(e^{ix}-1)u_n+\underbrace{O(1/n^{\alpha+1})}_{\text{série convergente}}$, série convergente d'où la convergence de $\sum_{n\geq 1}u_n$ si $x\in\mathbb{R}\backslash 2\pi\mathbb{Z}$.

On peut facilement contrôler le reste :

$$u_{n+1}(\alpha) - u_n(\alpha) = (e^{ix} - 1)u_n(\alpha) - \alpha e^{ix}u_n(\alpha + 1) + O(1/n^{\alpha+2}).$$

Si $\alpha > 0$ et $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ alors, en sommant entre n+1 et $+\infty$, et en désignant le reste par $R_n(\alpha)$:

$$-u_{n+1}(\alpha) = (e^{ix} - 1)R_n(\alpha) - \alpha e^{ix}R_n(\alpha + 1) + R_n(O(1/n^{\alpha+2})) (*)$$

mais aussi
$$-u_{n+1}(\alpha) = (e^{ix} - 1)R_n(\alpha) + R_n(O(1/n^{\alpha+1})),$$

soit : $-u_{n+1}(\alpha) = (e^{ix} - 1)R_n(\alpha) + O(1/n^{\alpha}),$ puis $R_n(\alpha) = O(1/n^{\alpha}).$

Ainsi le reste $R_n(\alpha+1)$ est en $O(1/n^{\alpha+1})$, tout comme $R_n(O(1/n^{\alpha+2}))$, d'où, par (*) $-u_{n+1}(\alpha)=(e^{ix}-1)R_n(\alpha)+O(1/n^{\alpha+1})$. Et en définitive $R_n(\alpha)\underset{+\infty}{\sim}\frac{u_{n+1}(\alpha)}{1-e^{ix}}$.

Pour le cas $\alpha < 0$:

La relation (*) donne $u_{n+1} - u_1 = (e^{ix} - 1)S_n(\alpha) - \alpha e^{ix}S_n(\alpha + 1) + S_n(O(1/n^{\alpha+2}))$. À nouveau cela justifie $S_n(\alpha) = O(1/n^{\alpha})$, et ce résultat appliqué à $S_n(\alpha + 1)$ permet alors de conclure.

3 Régularité

On suppose
$$\alpha > 0$$
, $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et on pose $f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}}$.

3.1 Continuité

Proposition 3 Pour $\alpha > 0$, $x \mapsto \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}}$ est continue sur $\mathbb{R} \setminus 2\pi\mathbb{Z}$,

Démonstration:

On écrit
$$u_{n+1} - u_n = (e^{ix} - 1)u_n + e^{ix}\underbrace{((1 + 1/n)^{-\alpha} - 1)}_{v_n} u_n(\alpha).$$

Par convergence:

$$-u_1(x) = (e^{ix} - 1)f_{\alpha}(x) + e^{ix} \sum_{n=1}^{\infty} u_n(x)v_n$$
 (1)

Le point étant que $v_n = O(1/n)$ et est indépendant de x.

Par une évidente convergence normale sur \mathbb{R} ,

$$\sum_{n=1}^{\infty} u_n(x)v_n \text{ est continue sur } \mathbb{R}, \text{ et donc } f_{\alpha} \text{ est continue sur } \mathbb{R} \setminus 2\pi \mathbb{Z}.$$

Si $\alpha > 1$ par convergence normale évidente de $\sum_{n=1}^{\infty} u_n'(x)v_n$,

on obtient f_{α} est \mathcal{C}^1 sur $\mathbb{R}\setminus 2\pi\mathbb{Z}$.

3.2 Dérivabilité

Proposition 4 Pour
$$\alpha > 0$$
, $x \mapsto \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}}$ est C^1 sur $\mathbb{R} \setminus 2\pi \mathbb{Z}$.

Démonstration:

On écrit cette fois
$$u_{n+1}(\alpha) - u_n(\alpha) = (e^{ix} - 1)u_n(\alpha) - \alpha u_n(\alpha + 1) + e^{ix}\underbrace{((1 + 1/n)^{-\alpha} - 1 + \alpha/n)}_{w_n}u_n(\alpha)$$

puis
$$-u_1(x) = (e^{ix} - 1)f_{\alpha}(x) - \alpha e^{ix}f_{\alpha+1}(x) + e^{ix}\sum_{n=1}^{\infty}u_n(x)w_n$$
 avec $w_n = O(1/n^2)$, w_n indépendant de x .

Les séries
$$\sum_{n=1}^{\infty} w_n u_n(\alpha)$$
 et $\sum_{n=1}^{\infty} u_n(\alpha+1)$ sont \mathcal{C}^1 sur $\mathbb{R} \setminus 2\pi \mathbb{Z}$

(par convergence normale de la série dérivée terme à terme pour la première,

par la deuxième ligne de la proposition 3 pour la deuxième), et donc f_{α} est \mathcal{C}^1 sur $\mathbb{R} \setminus 2\pi \mathbb{Z}$ pour $\alpha > 0$.

On peut ainsi vérifier, par des écritures analogues, que f_{α} est \mathcal{C}^{∞} sur $\mathbb{R}\backslash 2\pi\mathbb{Z}$, toujours pour $\alpha > 0$.

4 Asymptotique

On suppose $\alpha \in]0,1[$, on veut une asymptotique de f_{α} en 0. On va utiliser le lien suite série pour obtenir une asymptotique.

4.1 Premier exemple

On va mettre en place ce lien suite série dans un exemple qui va montrer l'intérêt de cette méthode.

Commençons par
$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\underbrace{n+x}}$$

qui va donner très facilement un résultat assez intéressant

$$u_{n+1} - u_n = -2u_n + \underbrace{(-1)^{n+1} \left(\frac{1}{n+1+x} - \frac{1}{n+x} \right)}_{v_n(x)}, \text{ puis } -u_0 = -2f(x) + \sum_{n=0}^{\infty} v_n(x).$$

Par décroissance de
$$|vn(x)|$$
 on obtient $\left|\sum_{n=0}^{+\infty} v_n\right| \le |v_0| = O(1/x^2)$ pour $x \to +\infty$.

Donc
$$f(x) \sim \frac{1}{2x}$$

4.2 Retour à l'étude de f_{α} en 0

On suppose
$$\alpha \in]0,1[$$
 et on note $f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}}.$

4.2.1 Par comparaison à une intégrale

C'est assez simple et efficace :

Ici
$$u_n(x) = \frac{e^{inx}}{n^{\alpha}}$$
.

$$\int_{n}^{n+1} \frac{e^{itx}}{t^{\alpha}} dt = \left[\frac{e^{itx} - e^{inx}}{ixt^{\alpha}} \right]_{n}^{n+1} + \frac{\alpha}{ix} \underbrace{\int_{n}^{n+1} \frac{e^{itx} - e^{inx}}{t^{\alpha+1}} dt}_{v_{n}(x)}.$$

Or $|e^{itx} - e^{inx}| \le x$ par le théorème des accroissements finis, et donc $|v_n(x)| \le x \int_{-\infty}^{n+1} \frac{\mathrm{d}t}{t^{\alpha+1}}$,

puis
$$\int_{1}^{+\infty} \frac{e^{itx}}{t^{\alpha}} dt = \sum_{n=1}^{+\infty} u_n(x) \frac{e^{ix} - 1}{ix} + \underbrace{\frac{\alpha}{ix} \sum_{n=1}^{+\infty} v_n(x)}_{O(1)},$$

soit
$$f_{\alpha}(x)\frac{e^{ix}-1}{ix}+O(1)=\frac{1}{x^{1-\alpha}}\int_{x}^{+\infty}\frac{e^{iu}}{u^{\alpha}}du$$
, i.e.
$$f_{\alpha}(x)\underset{x\to 0}{\sim}\frac{1}{x^{1-\alpha}}\int_{0}^{+\infty}\frac{e^{iu}}{u^{\alpha}}du$$

4.2.2 Par l'écriture de f_{α} à l'aide de 3.2

L'obtention de l'équivalent est assez facile, mais le calcul de la constante est délicat et il faut être soigneux.

Dans toute la suite on supposera $0 < \alpha < 1$.

On pose
$$a_n = (1 + 1/n)^{-\alpha} - 1 + \alpha/n$$
, $h(x) = \sum_{n=1}^{+\infty} \frac{a_n}{n^{\alpha - 1}} e^{inx}$, et $g(x) = \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}} \left[(1 + 1/n)^{-\alpha} - 1 \right]$.

On a déjà établi la relation (1) au paragraphe 3.

$$-u_1(x) = (e^{ix} - 1)f_{\alpha}(x) + e^{ix} \sum_{n=1}^{\infty} u_n(x)v_n \text{ avec } v_n = (1 + 1/n)^{-\alpha} - 1$$

soit
$$(1 - e^{ix})f_{\alpha}(x) = e^{ix}(g(x) + 1) = \int_{0}^{x} g'(t) dt$$
 et $g'(x) = i \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha - 1}} \left[(1 + 1/n)^{-\alpha} - 1 \right]$

$$= -i\alpha \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}} + i \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha-1}} \left[(1+1/n)^{-\alpha} - 1 + \alpha/n \right] = -i\alpha f(x) + ih(x).$$

Posons alors
$$F(x) = \int_0^x f(t) dt$$
 et $H(x) = \int_0^x h(t) dt$.

On a donc
$$(1 - e^{ix})F'(x) = e^{ix} \int_0^x (-i\alpha f(t) + ih(t)) dt$$
,
soit $(1 - e^{ix})F'(x) + i\alpha e^{ix}F(x) = ie^{ix}H(x)$ ou

$$2\sin(x/2)F'(x) - \alpha e^{ix/2}F(x) = -e^{ix/2}H(x) \ (E)$$

l'équation homogène admet pour solutions $\lambda \sin^{\alpha}(x/2)e^{i\alpha x/2}$. La variation de la constante fournit $\lambda'(x) = -\frac{e^{ix(1-\alpha)/2}}{2}\frac{H(x)}{\sin^{\alpha+1}(x/2)}$ ce qui servira plus tard, puis $F(x) = \lambda(x) \sin^{\alpha}(x/2) e^{i\alpha x/2} \sim \lambda(0)(x/2)^{\alpha}$.

On reporte dans (E), et comme H(x) = O(x), $xF'(x) = O(x) + \alpha F(x)e^{ix/2} \underset{x\to 0}{\sim} \alpha\lambda(0)(x/2)^{\alpha}$ et enfin

$$f(x) \underset{x \to 0}{\sim} \frac{\alpha \lambda(0)}{2^{\alpha} x^{1-\alpha}}$$

(en toute rigueur, il faut établir que $\lambda(0) \neq 0$, ce qui proviendra du calcul de $\lambda(0)$ mais pourrait aussi s'établir par l'absurde).

Calcul de la constante $\lambda(0)$

C'est l'histoire de l'homme qui a vu l'homme qui a vu l'ours...

Préliminaires.

$$\lambda(\pi) - \lambda(0) = \int_0^{\pi} \lambda'(x) \, dx \text{ et } F(\pi) = \lambda(\pi) e^{i\alpha\pi/2}, \text{ soit } \lambda(\pi) = e^{-i\alpha\pi/2} F(\pi) = e^{-i\alpha\pi/2} \int_0^{\pi} f(t) \, dt,$$

$$\operatorname{donc} \lambda(0) = e^{-i\alpha\pi/2} \int_0^{\pi} f(t) \, dt + \frac{1}{2} \underbrace{\int_0^{\pi} \frac{H(x) e^{ix(1-\alpha)/2}}{\sin^{\alpha+1}(x/2)} \, dx}.$$

$$\int_0^{\pi} f(x) \, dx = \sum_{n=1}^{+\infty} \frac{1}{in^{\alpha+1}} \left[e^{inx} \right]_0^{\pi} = i \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n^{\alpha+1}}$$

$$\operatorname{et}, \text{ par } h(x) = \sum_{n=1}^{+\infty} \frac{a_n}{n^{\alpha-1}} e^{inx}, H(x) = -i \sum_{n=1}^{+\infty} \frac{a_n}{n^{\alpha}} (e^{inx} - 1) \text{ (rappelons que } a_n = O(1/n^2)).$$

$$J = -i \sum_{n=1}^{+\infty} \frac{a_n}{n^{\alpha}} \underbrace{\int_0^{\pi} \frac{e^{ix(1-\alpha)/2}(e^{inx} - 1)}{\sin^{\alpha+1}(x/2)} \, dx}.$$

Calcul de I_n puis de J_n .

Posons
$$I_n = \int e^{ix/2} \frac{e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}}{\sin^{\alpha+1}(x/2)} dx$$

$$= i \int \frac{e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}}{\sin^{\alpha}(x/2)} dx + \underbrace{\int \frac{\cos(x/2)}{\sin^{\alpha+1}(x/2)} (e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}) dx}_{A}.$$

$$\begin{split} & \text{Par intégration par parties} \\ & A = -\frac{2}{\alpha \sin^{\alpha}(x/2)} (e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}) + \frac{2i}{\alpha} \int \frac{1}{\sin^{\alpha}(x/2)} \left((n-\alpha/2) e^{ix(n-\alpha/2)} + \frac{\alpha}{2} e^{-ix\alpha/2} \right) \; \mathrm{d}x, \\ & \text{et } I_n = i \int \frac{e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}}{\sin^{\alpha}(x/2)} \; \mathrm{d}x - \frac{2}{\alpha \sin^{\alpha}(x/2)} (e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}) \\ & + i(-1+2n/\alpha) \int \frac{e^{ix(n-\alpha/2)}}{\sin^{\alpha}(x/2)} \; \mathrm{d}x + i \int \frac{e^{-ix\alpha/2}}{\sin^{\alpha}(x/2)} \; \mathrm{d}x \end{split}$$

Soit

$$I_n = -\frac{2}{\alpha \sin^{\alpha}(x/2)} \left(e^{ix(n-\alpha/2)} - e^{-ix\alpha/2}\right) + \frac{2in}{\alpha} \int \frac{e^{ix(n-\alpha/2)}}{\sin^{\alpha}(x/2)} dx$$

Ainsi
$$J_n = \frac{2}{\alpha} e^{-i\alpha\pi/2} (1-(-1)^n) + \frac{2in}{\alpha} \int_0^\pi \frac{e^{ix(n-\alpha/2)}}{\sin^\alpha(x/2)} \, \mathrm{d}x.$$

Soit $y_n = \int_0^\pi \frac{e^{ix(n-\alpha/2)}}{\sin^\alpha(x/2)} \, \mathrm{d}x.$
 $y_{n+1} - y_n = \int_0^\pi \frac{e^{-ix\alpha/2}}{\sin^\alpha(x/2)} (e^{i(n+1)x} - e^{inx}) \, \mathrm{d}x = 2i \int_0^\pi \frac{e^{ix(n+(1-\alpha)/2)}}{\sin^{\alpha-1}(x/2)} \, \mathrm{d}x.$
 $y_{n+1} + y_n = \int_0^\pi \frac{e^{-ix\alpha/2}}{\sin^\alpha(x/2)} (e^{i(n+1)x} + e^{inx}) \, \mathrm{d}x = \int_0^\pi 2 \frac{\cos(x/2)}{\sin^\alpha(x/2)} e^{ix(n+(1-\alpha)/2)} \, \mathrm{d}x.$

Par intégration par parties

 $y_{n+1} + y_n = \left[\frac{4\sin^{1-\alpha}(x/2)}{1-\alpha} e^{ix(n+(1-\alpha)/2)} \right]_0^\pi - \frac{4i}{1-\alpha} (n+(1-\alpha)/2) \int_0^\pi e^{ix(n+(1-\alpha)/2)} \sin^{1-\alpha}(x/2) \, \mathrm{d}x$
 $= \frac{4i(-1)^n e^{-i\alpha\pi/2}}{1-\alpha} - \frac{2}{1-\alpha} (n+(1-\alpha)/2) (y_{n+1}-y_n).$

Après simplification, cela donne $(n+1-\alpha)y_{n+1} = ny_n + 2i(-1)^n e^{-i\alpha\pi/2},$

et $J_n = \frac{2}{\alpha} e^{-i\alpha\pi/2} (1-(-1)^n) + \frac{2in}{\alpha} y_n.$

$$\begin{split} J_{n+1} &= \frac{2e^{-i\alpha\pi/2}}{\alpha}(1+(-1)^n) + \frac{2i(n+1)}{\alpha(n+1-\alpha)}(ny_n + 2ie^{-i\pi\alpha/2}(-1)^n) \\ &= \frac{2e^{-i\alpha\pi/2}}{\alpha}(1+(-1)^n) + \frac{n+1}{n+1-\alpha}(\underbrace{\frac{2in}{\alpha}y_n}_{J_n - \frac{4e^{-i\alpha\pi/2}}{\alpha}}(-1)^n), \\ &= \underbrace{1-\frac{2e^{-i\alpha\pi/2}}{\alpha}(1-(-1)^n)}_{J_n + (n+1-\alpha)J_{n+1} = (n+1)J_n + (n+1-\alpha)\frac{2e^{-i\alpha\pi/2}}{\alpha}(1+(-1)^n) - (n+1)\frac{2e^{-i\alpha\pi/2}}{\alpha}(1-(-1)^n) - (n+1)\frac{4e^{-i\alpha\pi/2}}{\alpha}(-1)^n, \end{split}$$
 et $(n+1-\alpha)J_{n+1} = (n+1)J_n + (n+1-\alpha)\frac{2e^{-i\alpha\pi/2}}{\alpha}(1+(-1)^n) - (n+1)\frac{2e^{-i\alpha\pi/2}}{\alpha}(1-(-1)^n) - (n+1)\frac{4e^{-i\alpha\pi/2}}{\alpha}(-1)^n, \end{split}$

et enfin

$$(n+1-\alpha)J_{n+1} = (n+1)J_n - 2e^{-i\alpha\pi/2}(1+(-1)^n)$$
 relation (**)

Un calcul de somme.

Proposition 5
$$\sum_{n=0}^{+\infty} \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} t^n = \frac{1-(1-t)^{\alpha}}{t\alpha} \ pour \ \alpha > 0 \ et \ t \in [-1,1].$$

Démonstration:

Soit
$$u_n = \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}$$
.

Soit $u_n = \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}$. On vérifie facilement $\frac{u_{n+1}}{u_n} = 1 - \frac{1+\alpha}{n} + O(1/n^2)$ en $+\infty$.

De façon classique, on en déduit $u_n \sim \frac{K}{n^{\alpha+1}}$ et ceci assure la convergence normale de la série étudiée pour $t\in [-1,1].$

On remarque que
$$(-1)^{n+1} \binom{\alpha}{n+1} = -\alpha \frac{(1-\alpha)\cdots(n-\alpha)}{(n+1)!}$$
.

On remarque que
$$(-1)^{n+1} {\alpha \choose n+1} = -\alpha \frac{(1-\alpha)\cdots(n-\alpha)}{(n+1)!}$$
.
Donc $\frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} = \frac{(-1)^n}{\alpha} {\alpha \choose n+1}$, puis $\sum_{n=0}^{+\infty} \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} t^n = \frac{1}{\alpha} \sum_{n=0}^{+\infty} {\alpha \choose n+1} (-t)^n$

$$= -\frac{1}{t\alpha} \sum_{n=0}^{+\infty} {\alpha \choose n+1} (-t)^{n+1} = -\frac{1}{t\alpha} \left((1-t)^{\alpha} - 1 \right). \blacksquare$$

$$\sum_{n=0}^{+\infty} \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} = \frac{1}{\alpha} \text{ relation (1)}.$$

$$\sum_{n=0}^{+\infty} \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} = \frac{1}{\alpha} \text{ relation (1)}.$$

$$\sum_{n=0}^{+\infty} \frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!} (-1)^n = \frac{2^{\alpha}-1}{\alpha} \text{ relation (2)}.$$

Equivalent de J_n .

Proposition 6
$$J_n = \int_0^{\pi} \frac{e^{ix(1-\alpha)/2}(e^{inx}-1)}{\sin^{\alpha+1}(x/2)} dx \underset{+\infty}{\sim} \Gamma(-\alpha)2^{\alpha+1}n^{\alpha}e^{-i\alpha\pi/2}.$$

Démonstration:

$$\frac{(n+1-\alpha)\cdots(1-\alpha)}{(n+1)!}J_{n+1} = \frac{(n-\alpha)\cdots(1-\alpha)}{n!}J_n - 2e^{-i\alpha\pi/2}(1+(-1)^n))\frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}J_n$$

On multiplie la relation (**) par
$$\frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}$$
 :
$$\frac{(n+1-\alpha)\cdots(1-\alpha)}{(n+1)!}J_{n+1} = \frac{(n-\alpha)\cdots(1-\alpha)}{n!}J_n - 2e^{-i\alpha\pi/2}(1+(-1)^n))\frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}.$$
 En sommant de $n=0$ à $+\infty$, on déduit grâce aux relations (1) et (2) ainsi que par le lien suite série
$$\lim_{n\to+\infty}\frac{(n-\alpha)\cdots(1-\alpha)}{n!}J_n = -2e^{-i\pi\alpha/2}\sum_{n=0}^{+\infty}\frac{(n-\alpha)\cdots(1-\alpha)}{(n+1)!}(1+(-1)^n) = -e^{-i\alpha\pi/2}\frac{2^{\alpha+1}}{\alpha}\;.$$

Par la relation $\Gamma(x) = \lim_{x \to +\infty} \frac{n!n^x}{x(x+1)\cdots(x+n)}$, on en déduit $\frac{(n-\alpha)\cdots(1-\alpha)}{n!} \underset{+\infty}{\sim} - [\alpha\Gamma(-\alpha)n^\alpha]^{-1}$, soit $\frac{(n-\alpha)\cdots(1-\alpha)}{n!}J_n \underset{+\infty}{\sim} - \frac{J_n}{\alpha\Gamma(-\alpha)n^\alpha}$, puis $\lim_{n \to +\infty} - \frac{J_n}{\alpha\Gamma(-\alpha)n^\alpha} = -e^{-i\alpha\pi/2}\frac{2^{\alpha+1}}{\alpha}$, soit $J_n \underset{+\infty}{\sim} \Gamma(-\alpha)2^{\alpha+1}n^\alpha e^{-i\alpha\pi/2}$.

soit
$$\frac{(n-\alpha)\cdots(1-\alpha)}{n!}J_n \sim -\frac{J_n}{\alpha\Gamma(-\alpha)n^{\alpha}}$$
, puis $\lim_{n\to+\infty} -\frac{J_n}{\alpha\Gamma(-\alpha)n^{\alpha}} = -e^{-i\alpha\pi/2}\frac{2^{\alpha+1}}{\alpha}$

soit
$$J_n \sim \Gamma(-\alpha)2^{\alpha+1}n^{\alpha}e^{-i\alpha\pi/2}$$
.

Calcul de J et conclusion.

Proposition 7 Pour
$$0 < \alpha < 1$$
 on $a \sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}} \underset{x \to 0}{\sim} i \frac{\Gamma(1-\alpha)}{2^{\alpha}x^{1-\alpha}} e^{-i\pi\alpha/2}$

Démonstration:

On rappelle les relations
$$\lambda(0) = ie^{-i\alpha\pi/2} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n^{\alpha+1}} - \frac{i}{2} \sum_{n=1}^{+\infty} \frac{a_n J_n}{n^{\alpha}}$$
, et $\sum_{n=1}^{+\infty} \frac{e^{inx}}{n^{\alpha}} \underset{+\infty}{\sim} \frac{\alpha\lambda(0)}{2^{\alpha}x^{1-\alpha}}$.

$$\begin{split} &\frac{a_n J_n}{n^{\alpha}} = J_n \big(\frac{1}{(n+1)^{\alpha}} - \frac{1}{n^{\alpha}} + \frac{\alpha}{n^{\alpha+1}} \big) = \frac{J_n}{(n+1)^{\alpha}} - \frac{(n-\alpha)J_n}{n^{\alpha+1}} \\ &= \frac{J_n}{(n+1)^{\alpha}} - \frac{nJ_{n-1} - 2e^{-i\alpha\pi/2}(1 - (-1)^n)}{n^{\alpha+1}} = \frac{J_n}{(n+1)^{\alpha}} - \frac{J_{n-1}}{n^{\alpha}} - 2e^{-i\alpha\pi/2} \frac{1 - (-1)^n}{n^{\alpha+1}}. \end{split}$$

Comme
$$J_0 = 0$$
, $\sum_{n=1}^{+\infty} \left(\frac{J_n}{(n+1)^{\alpha}} - \frac{J_{n-1}}{n^{\alpha}} \right) = \lim_{n \to +\infty} \frac{J_n}{(n+1)^{\alpha}} = \Gamma(-\alpha) 2^{\alpha+1} e^{-i\alpha\pi/2}$,

et
$$\sum_{n=1}^{+\infty} \frac{a_n J_n}{n^{\alpha}} = \Gamma(-\alpha) 2^{\alpha+1} e^{-i\alpha\pi/2} - 2e^{-i\alpha\pi/2} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n^{\alpha+1}},$$

enfin
$$\lambda(0) = e^{-i\pi\alpha/2} \left(i \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^{\alpha+1}} - \frac{i}{2} \Gamma(-\alpha) 2^{\alpha+1} - i \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^{\alpha+1}} \right) = -i\Gamma(-\alpha) 2^{\alpha} e^{-i\pi\alpha/2}.$$

L'équivalent cherché est donc $-\frac{i\alpha\Gamma(-\alpha)}{2^{\alpha}x^{1-\alpha}}e^{-i\pi\alpha/2}=i\frac{\Gamma(1-\alpha)}{2^{\alpha}x^{1-\alpha}}$.

Remarques

- On obtient, par ce calcul et 4.2.1 la relation $\int_0^{+\infty} \frac{e^{iu}}{u^{\alpha}} du = i \frac{\Gamma(1-\alpha)}{2^{\alpha}} e^{-i\pi\alpha/2}$ (un peu compliqué comme méthode de calcul de l'intégrale...)

- Mais on a aussi établi un équivalent de J_n , ce qui est non trivial.

5 Étude de $\sum_{n=1}^{+\infty} \frac{e^{ix\sqrt{n}}}{n^{\alpha}}$.

On pose ici $u_n = \frac{e^{ix\sqrt{n}}}{n^{\alpha}}$ et $v_n = \frac{e^{ix\sqrt{n}}}{n^{\beta}}$.

5.1 Convergence.

On pose $\alpha = \beta + 1/2$.

Proposition 8

La série $\sum u_n$ converge $\Leftrightarrow \alpha > 1/2$.

En cas de convergence, en notant $R_n(u)$ son reste de rang n, $R_n(u) \sim \frac{i\sqrt{n}}{x}u_n$.

Pour $0 < \alpha < 1/2$, en notant S_n la somme partielle de rang n, $S_n \sim -\frac{i\sqrt{n}}{x}u_n$.

Démonstration:

- Tout d'abord, on remarque que $\sqrt{n+1} - \sqrt{n} = \frac{1}{2\sqrt{n}} + O(1/n^{3/2})$, donc $e^{ix\sqrt{n+1}} - e^{ix\sqrt{n}} = 1 + \frac{ix}{\sqrt{n}} + O(1/n)$. Puis $v_{n+1} - v_n = v_n \left((1+1/n)^{-\beta} e^{ix(\sqrt{n+1} - \sqrt{n})} - 1 \right) = \frac{ix}{\sqrt{n}} v_n + O(1/n^{\beta+1}) = ixu_n + O(1/n^{\beta+1})$. Ainsi

$$v_{n+1} - v_n = ixu_n + O(1/n^{\beta+1})$$

Par le lien suite série, on déduit la convergence de la série $\sum u_n$ si $\beta > 0$, soit si $\alpha > 1/2$.

- Ensuite, cette relation montre en passant au reste $R_n(u) = O(1/n^{\beta})$.

Pour la suite, il faut une asymptotique plus précise :

$$v_{n+1} - v_n = ixu_n + c(x)\frac{e^{ix\sqrt{n}}}{n^{\beta+1}} + O(1/n^{\beta+3/2})$$
 relation (***)

7

c(x) désignant une constante. Par la remarque précédente $R_n\left(\frac{e^{ix\sqrt{n}}}{n^{\beta+1}}\right) = O(1/n^{\beta+1})$. Comme $R_n(O(1/n^{\beta+3/2}) = O(1/n^{\beta+1/2}))$, on obtient bien $ixR_n(u) \underset{+\infty}{\sim} -v_n$.

- Si maintenant on prend $-1/2 < \beta < 0$ dans la relation (***), la série $\sum \frac{e^{ix\sqrt{n}}}{n^{\beta+1}}$ converge, mais la suite v_n diverge.

Ceci montre la divergence de la série $\sum u_n$, et, en passant aux sommes partielles, $v_{n+1}=ixS_n(u)+l+o(1), l$ désignant une constante. Ainsi $S_n(u) \underset{+\infty}{\sim} -\frac{i\sqrt{n}}{x}u_n$.

Remarque:

- On peut montrer que $S_n(u)$ est bornée pour $\alpha = 1/2$ par cette méthode (ou par comparaison à une intégrale),
- Ceci permettrait alors de faire une transformation d'Abel pour le cas $\alpha>1/2$: Il suffirait d'écrire $\frac{e^{ix\sqrt{n}}}{n^{\alpha}}=\frac{e^{ix\sqrt{n}}}{\sqrt{n}}\frac{1}{n^{\alpha-1/2}}$.

Continuité. 5.2

On note
$$u_n(x) = \frac{e^{ix\sqrt{n}}}{n^{\alpha}}$$
 pour $\alpha > 1/2$ et $f(x) = \sum_{n=1}^{+\infty} u_n(x)$.

Proposition 9

f est continue sur \mathbb{R}^* .

La démonstration est analogue à celle de 3.1,

il faut écrire
$$v_{n+1} - v_n = ixu_n + u_n \underbrace{\left[\left(1 + \frac{1}{n}\right)^{-\beta} e^{i(\sqrt{n+1} - \sqrt{n})} - ix\right]}_{z_n(x)}$$

puis de vérifier $|z_n(x)| \leq \frac{C}{\sqrt{n}}$ (C désigne une constante) si x décrit un compact de \mathbb{R} .

5.3 Asymptotique en 0.

Ici on va supposer $1/2 < \alpha < 1$ et on veut étudier f en 0.

Proposition 10

Pour
$$x \to 0$$
 on $a f(x) \underset{+\infty}{\sim} \frac{2}{x^{2(1-\alpha)}} \int_{0}^{+\infty} \frac{e^{iu}}{u^{2\alpha-1}} du$.

Démonstration:

On travaille sur $x \in [0,1]$ par exemple. On pose $g(t) = \frac{e^{ix\sqrt{t}}}{t^{\alpha}}$, on remarque que sur [n,n+1] on a une majoration $|g'(t)| \leq \frac{C}{n^{\alpha+1/2}}$.

On définit alors $x_n(t) = \int_{0}^{n+1} f(t) dt - f(n)$. On a clairement $|x_n(t)| \leq \frac{C}{n^{\alpha+1/2}}$.

Ainsi, par convergence de la série $\sum x_n$, $f(x) = \int_1^{+\infty} g(t) dt + O(1)$.

Ceci donne alors le résultat en posant $x\sqrt{t}=u$ dans l'intégrale.

Cet article est sous licence CC BY-NC-SA-ND

8