Pseudo-périodicité d’une solution d’une équation différentielle.

On va ici s’'intéresser a certaines équations différentielles provenant de celle d’un
cosinus perturbé et ayant une asymptotique presque périodique.

Référence)
Résumé.

Un probleme classique pour un certain type d’équation différentielle est d’étudier les
annulations d’une solution, dans le cas par exemple de 1’équation

y"(x) +q(z)y(z) =0
si q est assez positive. Un exemple motivant cet article en sera I’équation
y" (@) + e y(z) = 0

Une méthode classique pour traiter cette question consiste a étudier les solutions
a partir d’'un encadrement de la fonction ¢ apparaissant dans I’équation. Ici on va
prendre le probleme différemment. On va donner une asymptotique d’une solution, ce
qui permmettra facilement d’en déduire une asymptotique précise de ses annulations.
Dans un premier temps, on va considérer I’équation du cosinus perturbée, a savoir

y'(@) + (1 + f(2)y(z) =0
avec f petite en un sens a préciser et on va donner une asymptotique des solutions a
o(1) pres.
Puis on traitera 'exemple annoncé de I’équation
y"(x) + e y(x) = 0

Ensuite, on mettra en place des outils permettant de donner une asymptotique a n
termes, en vérifiant sur un exemple simple comment cela se met en place.

Enfin, comme le calcul général est tres complexe, on verra comment la connaissance
qualitative d’une telle asymptotique permet de la calculer de fagon efective.

1. Un cas simple

On va considérer I’équation

y' (@) + (1 + f(@)y(z) =0 (E)

avec f intégrable sur [0,4o00[. On la résout en écrivant y’ +y = g o g = —fy. On
obtient apres calculs

y(x) = acos(x)+bsin(xz)+cos(z) /01 F@y(t) sin(t) dt—sin(x) /Ow F(@®)y(¢t) cos(t) dt (1)
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On va ensuite éviter le lemme de Gronwal. Pour cela, on choisit A > 0

et on pose M = sup |y(t)| qui est atteint en un certain z. Par (I;) on
te(0,A4]

+oo
a M< \a|+|b\+2M/ |f(®)| dt.  Quitte & décaler lorigine par transla-
0

+oo
tion, on peut supposer / |f(#)| dt <1/2 et on en déduit une majoration
0
de M indépendante de A. Ainsi y est bornée. Mais alors f(¢)y(t)sin(t) et
x
F(t)y(t) cos(t) sont intégrables. Donc / F(@)y(t)sin(t) dt admet une limite et
0

x

s’écrit / f()y(t)sin(t) dt = @’ + o(1), de méme pour la deuxiéme intégrale. On

0
a donc y(z) = C(cos(x) + o(1)) + D(sin(z) + o(1)). On pourrait en déduire une
asymptotique plus précise en injectant ce résultat dans (I1), ceci sera mis en évidence
plus loin.

2. Exemple

L’équation y” (t) + e*'y(t) = 0
On pose et = z et on réécrit ’équation en
1
(@) + 1/ (@) +u(a) =0

On pose ensuite y(z) = L\/%) et on trouve

2 (x) + (1 + 4:152) 2(z) =0

La partie précédente donne alors une asymptotique en +o0o qui fournit directement
une asymptotique des annulations de z puis de y :

z(x) = asin(xz + ¢ + o(1))

avec deux constantes a et ¢ qui dépendent des conditions initiales, et donc la n-ieme
annulation est z,, = nm — ¢ + o(1), soit pour I’équation titre :

tn = In(nm — ¢+ o(1))

3. Pour aller plus loin

3.1. Méthode générale. — On va ici reprendre 1’équation

y' (@) + (1 + f(@)y(z) =0 (E)

et donner des outils en vue d’'une asymptotique plus précise. On note

+oo
F(z) = / )] de



+oo
Pour a € R, I(f)(z) = / cint £ (1) dt

- Expression de y.
On va d’abord réécrire les solutions de I’équation

y'(z) +y(x) = g(x)
ol on a posé g = —fy avec f intégrable. On obtient

ie—m:

s 1T +oo +o00o
) = e+ et = S [ e a+ S [T founet ar ()

2iey () —2ie_(z)

Ce qui se réécrit
y(z) = (A+e ()™ + (B+e_(z))e ™™

L’idée est donc qu'une asymptotique de €4 permet d’avoir un résultat encore
plus précis.
- On départ, on sait seulement e (z) = O(F(x)). On écrit alors

i +oo . . .
celo) =5 [ SO+ OF©)E + (B+ O (E)e e di

On a done
() = 1 (Alo(a) + BI»(x) + O(F(x))
et de méme
e (z) = % (AL(x) + Blo(x) + O(F*(z)))

- On injecte ensuite ce résultat dans la définition de ey (x) et on obtient une

+oo
FOF2(0) at) = O(F (o))

meilleure estimation. Le terme d’erreur est cette fois-ci en O ( /
xT

- On réitere le procédé et on peut obtenir une erreur en o F*(x)).

D’ou la proposition suivante :

Proposition 1. — Si on pose po(x) = qo(z) =0,

T ,
pona@) = =5 [ (A4 pu(0) + (B + au(0)e 1100 a

et

7

+o0 )
t(@) =5 [ 1A+ pu®) + B+ an0))F0) b

alors y(x) = [A + pp(2)]e® + [B + q,(z)]e™ ™ + O(F"*1(x)).



3.2. Exemple. — On va ici mettre le principe exposé en application dans le cas ou
f est une fonction intégrable pour obtenir le type d’asymptotique qu’on peut espérer
pour y. Pour un k-uplet de réels A on définit I4(f)(x) de fagon récursive par

+oo
SiaeR, I, = / e f(t) dt

Et pour A = (a1, -+ ,ax),

+oo
IA(f)(@) = Liay oo o) (f)(2) = / e f (W) ay.... 0 (f)(t) dt = I, (x — f(x)l(am_“,ak)(x)) (x)
On rappelle la relation

y(@) = [A+pa(@)]e™ + [B + gu(@)le™™ + o(F" (x))

+oo
avec F(x) :/ |f(®)] dt. On va définir d’autres objets permettant le calcul des
x
Pns 4n-

Définition 1. — On définit deux suites d’ensembles X,, et Y, ainsi que deuz suites
de coefficients a,, et b, définies sur les ensembles X,, et Y, respectivement de la
facon suivante a l'aide des deux constantes A et B telles qu’elles apparaissent dans
la relation (x) du 3.1:

- XO = YO = @

- Xo1 ={(0)} U{(=2)} U{(0,2n), zn € Xn} U{(=2,4n), yn € Y}

Vs = {OI UL} UL(2,20), 0 € X} UL(0,50)s g € Va).

- Pour € X,q1 on va définir a(z) selon les cas : ap+1((0)) = —%2 et

ant1((=2)) = =7 ap41((0,2)) = —Fan(z) et ant1((=2,y)) = —5bu(y)-
- Pour y € Y, 11 on va définir b(x) selon les cas : b, 1((0)) = £ et b, 1((2)) =

A b1 (2.2)) = San(@) et bypr((0,9)) = Eba(y). i

On remarquera que les éléments de X, et Y,, sont des p-uplets avec p variable. Si par
exemple x = (z1,---,%,), la notation (0,z) est abusive, elle désigne (0, x1, - ,zp).
De méme, on notera a,(0) en lieu et place de a,((0)).

Proposition 2. — Calcul des py, et q,. On dispose des relations p,(t) = Z a(x)Ix(f)()

reX,
et gn(t) = Y b(y)Iy (f)(?).
YEY,
Démonstration. — On procede par récurrence sur n, la realtion étant évidente pour

n = 0. Pour le passage du rang n au rang n + 1, on reprend la proposition 1 qui
affirme

i [T ;
pon(@) = =5 [ A+ pu(0) + (B + au(0)e 21 (0)

soit

i i i [T oo ,
Pry1(2) = —§A10(f)($) - 531_2(f)(x) - */ pn(t)f(t) dt — */ g (t)e™ " f(t) dt



On écrit ensuite py,(t) = Z a(x)Ix(f)(t), qu(t) = Z b(y)Iy (f)(t) et on obtient

reX, yey,

P (@) = =S AT(F)(#) =S BL () @)+ 3 = Sale)lom(N@)+ D~ Sbu) 2 (H))

rze€X, yeYy,

ce qui est la relation annoncée pour p,11. Celle concernant g, 41 se traite de la méme
maniere. O

Exemple : on va écrire en premiere ligne les éléments de X,, (resp. Y,,) et en
dessous les valeurs de a(z) (resp. b(y)).

n=~0 X():Y():[Z).

n=1 <aé)) = (24 _}> ! (b(yy)> - <2B 2‘)
) 0

) - (G oy e o e

2 2 4

<b(yy))(% i (2,A0) (2,;2) (O,g) (0,3))

2 2 1 1 1 1

L’étude générale de I 4(f)(x) ne semble pas aboutir & des résultats simples et expoita-
bles. On va donc renoncer a tenter de donner une formule assez générale quant a une
asymptotique d’une solution de I’équation (E) et se concentrer sur un cas pratique,
avant de voir les effets que donnent ces objets pour une étude théorique.

3.2.1. Lecasn=2. —

Définition 2. — Fonction a-réguliere. Soit o> 0. On dit que f est a-réguliere si
Vi >0, fO(z) =o(z7f(x)) pour x — +00.

Dans toute la suite de cet exemle, on prendra f(x) = 1/22, donc F(x) = 1/x
et f est 1-réguliere. L’intérét de cet exemple est de montrer comment obtenir une
asymptotique précise, méme si les calculs sont lourds. On va utiliser les résultats du
paragraphe 3.2. On rappelle donc

aw) "\ - 4 2 E 4
( y ) B (0 2 (2,0) (2,-2) (0,0) (0,2))
bw)) \% % & - -4

po(a) = ~ LI (1) (@)~ 2 Lo(£) () G L0 (@)~ 2 Lo o) ()t 2 oy (D) + 7 T2 (D))
(0) = "L Io(F) )+ D 1) @) L (D@ 2 T o) (1))~ 2 o0 (1) @)~ 02y (1))



On va calculer les valeurs des intégrales I, ) (z) qui apparaissent ici. On rappelle

+oo
nww%wzf SN FOI(E) dt = I, (x s f(2) () ()

ainsi que par intégration par parties

L(f)@) = 5+ 0(1/5%) si a 0
et donc
F() I (@) = O(f3(2)) = O(1/a*) si b # 0
puis
Iap)(f)(@) = 1a (x = f(2)p(2)) (z) = 1, (O(l/x4)) = O(l/x3) sib# 0 (méme si a =0)

On a Iy(f)(z) = F(z) = 1/z.
- Pour a # 0, I,(f)(x) = €' L5 + O(1/2%).
- Pour a # 0, I(q,0)(f) () = (w = f(@)Io(f)) (x) = L(z = 1/2°) = O(1/2?).
Ton (@) = Io (= F@ (@) = Tole > f@)F() = 2 = o1
On en déduit

1
/—\

2z 422 8x2
iB  Ae*® B
20 =5 " HE T w2

On a donc le théoréme suivant :

Théoréme 1. — Le cas f( ) =1/22.
Les solutions de y" ( ( %) = O sont
i 3 ; i 3 .
Al - — — — 1T Bil1 e —ix o1 3
y(@) ( 2x 83:2)6 + < +2x 8x2>e +00/2%)
3.3. Le cas n quelconque. — Dans toute la suite, on supposera avoir F(z) =

O(x7¢) en +oo avec € > 0 pour obtenir une asymptotique explicite des solutions de
(E) en O(z~™), mais il serait possible en généralisant de traiter un cas plus large
qui donnerait une asymptotique en séries de %" pour un a > 0 au lieu de x7". De
méme, on pourrait en généralisant encore donner une asymptotique en O(F™(z)) ce
qui permettrait de traiter par exemple le cas f(z) = [zIn?(z)]~!. Ceci est laissé au
lecteur. Le point unportant explicité ici est d’une part de pouvoir donner le type
d’asymptotique qu’on peut espérer pour y (proposition 3 point (ii7)), d’autre part de

donner ensuite un moyen d’en faire un calcul explicite (théoreme 2).



Il est bien sir tres délicat de calculer les objets nécessaires dans un cadre as-
sez général. La méthode formelle mise en évidence démontre que pour 'exemple
f(x) = 1/2? on peut faire une asymptotique de y a l'ordre n du type

y(x) = P(1/z)e™ + Q(1/z)e™™ + O(1/a")

Mais ceci va étre ici généralisé dans un cadre plus vaste, celui des fonctions a-réguliere.
Dans tout ce paragraphe on va supposer f a-réguliere.

Proposition 3. — Asymptotique de 1,(f)(z).
Soit f une fonction a-réguliére.

(i) Pour tout a réel, on a I,(f9)(z) = o(z=7%) en +oc..

p+1
(ii) Pour tout a réel, on a I,(f9))(z) = Z (Z> '@ f(PH) () 4 o(x~ VHIHI)

0<p<N
en +00.
(iii) Si A= (a1, ,ax), alors & O(z=N®) prés, on peut exprimer Lo(f)(x) comme
le produit de @t par une combinaison linéaire de produits de dérivées
de f en x.
Démonstration. —

—+oo

(i) Par définition et comme f est a-réguliere, I,(f9))(z) = O </ tIf (1) dt) = o(z™7%)

(en majorant ¢~/ par 277%).
(#4) Par intégration par parties, on a

L(fP)@) = 3 ()+ P @) + (2)% L(f+1))(a)

0<p<N

La relation (i) dit que ce terme correctif est en O(z~(N+1+)a),

(7i1) Cela se fait par récurrence sur k, (i) démontrant le cas k = 1. Soit
A = (a1, -+ ,a;) = (a1,B). On écrit I4(f)(x) = L(x — f(z)Ip(f)(x))(x).
Par I'hypothese de récurrence, on peut exprimer x — f(z)Ig(f)(xz) comme

ellaat+ar)e fois une combinaison linéaire de produits de dérivées de f &
O(x=Ne) pres :

Ip(z) = ilaztotar)s Z Cp,jl,--njpf(jl)(f) e f(jp)(x) +0(z"N)
P.J1, 5 Jp
Pour le calcul de I,, le terme O(~N%) donne lieu & I,(O(z=V%)f(x)) qui
est en O(z~N?), et le terme ei(@2t-+an)z (1) (z) ... £Up)(z) donne I,(z
eilaztetan)e £() 0 () ... fUr)(2)) () . Le point (i) montre alors qu’on peut
en faire une asymptotique & tout ordre avec le type voulu comme résultat (pro-
duit de la bonne exponentielle par des produits de dérivées de f).

O

Remarques :



Pour les différents points de la proposition 3, on peut remarquer qu’on peut
démontrer I,(f9)(x) = O(fY)(z)) si @ # 0 par une intégration par parties.
Mais dans la pratique le cas a = 0 apparait trés souvent, comme par exemple
pour I, _q)(f)(), ce qui est le cas pour a = 2 qui a été mis en évidence dans
le paragraphe 3.2. Il vaut donc mieux avoir un résultat valable méme dans ce
cas particulier.

L’intérét de la proposition 3 est d’établir que pour une fonction a-réguliere, on
peut faire une évaluation de p,, et g, donc des solutions y de (E), & tout ordre
O(x™™) en +oo.

Du fait du calcul approché de y & 1’aide de f, du fait de la dépendance de I4(f)
par rapport & f, la proposition précédente montre que la connaissance de f a
O(h) pres donne celle de y également & O(h) pres, ce qui n’avait rien d’évident
(stabilité des solutions de I’équation différenteille par rapport aux fonctions
coefficients dans 1’équation).

Dans le cas ou f et ses dérivées peuvent s’exprimer en 400 comme des polynomes
en 1/x & O(z™") pres, on en déduit Pasymptotique de y :

y=e"P, (1/2) + e P_(1/z) + O(z™™) pour deux polynémes P, et P_

Il suffit alors de calculer des valeurs convenables de Py et P_, sans passer par
les calculs effectifs des ensembles X, et Y,, ainsi que des constantes a,(x), b, (y)
et surtout I.(f)(x) avec ¢ € X,, UY,,. Ceci est le but de la proposition suivante.

Théoréme 2. — Calcul effectif des solutions approchées.

On suppose f a-réguliére et intégrable sur RT ayant une asymptotique en 1/ en +oo
du type f(x) = H(1/x) + O(z™™) avec H polynéme (ce qui veut donc dire H(0) =
H'(0) =0). Alors les solutions de

y' (@) + (L + f(2)y(z) =0
sont
y(a) = e Py(1/z) + e P_(1/2) + O(z™")
ot Py (X) vérifient
XP"(X) +2X*(X Fi)P'(X) + H(X)P(X) est divisible par X"

Démonstration. — Traitons le cas du signe +, soit y(z) = e®p(x). On sait que
y(z) = ¢ Py(1/z) + O(z™™). Du fait de 'asymptotique de f en +oo, ceci qui
donne y”(xz) = e Py(1/x) + O(z~™) pour un polynéme P;. Par intégration par

tee L dt ,
parties, / e’ o s’écrit également € Q(1/x)+O(x~™). Ainsi on en déduit y(z) =
x

e R(1/z) + O(x~™) avec cette fois-ci la possibilité de dériver 'asymptotique. Donc
[e*R(1/2)]" + (1 + H(1/x))e* R(1/z) = O(z™™), ce qui donne aprés calculs

X4P"(X)+2X*(X F2)P'(X) + H(X)P(X) = O(X™)

comme espéré. On traite de méme le cas du signe —. O



Signalons pour terminer que cette équation est tres facile a résoudre puisqu’elle donne
lieu a un systeme linéaire triangulaire.

A titre d’exemple, pour f (z) = on trouve

1
22 —-3z+1"

i 3 3 9 43 859  21i 211 6829i
P X)=1--X—(-+ ) X2+ = ) X3 — + = | X'+ -== X5
+X) 2 <8+4) (8+48> <384+32> e T 120
et
L 330\ oy 9 43i\ s 859 213\ ., (211  6829i\
P_(X)1+2X+< 8+4>X+< - >X+< 384+32>X TRETT RS
et enfin les solutions de

1
1
1 =
4 (mH( +:c2—3:c+1>y 0

y(x) = Ae* P, @) \ Be~®p. (;) o (;)

3.4. Annulations. — On va ici donner comme sous-produit de 1’étude asmypto-
tique le calcul des annulations dans le contexte du théoreme 2. On va noter zj de
telles annulations. Il est évident que comme les hypotheses sur I’équation (F) ne sont
que asymptotiques, on ne peut étre certain de la numérotation des annulations. En
clair, cela signifie que ce qui est noté z; pourrait 1'étre xx,-

qui sont

Théoréme 3. — On reprend les hypothéses du théoreme 2, a savoir f a-réguliére
et intégrable sur RT ayant une asymptotique en 1/x en +oo du type f(x) = H(1/z)+
O(z™™) avec H polyndme (ce qui veut donc dire H(0) = H'(0) = 0). Alors les
solutions réelles de

y'(z) + (1 + f(2)y(z) =0
ont des annulations

- 1
ettt B yo (L)

Démonstration. — Plutdt que de traiter le cas général n quelconque qui serait fasti-
dieux, on va traiter le cas n = 3. On suppose donc avoir une solution réelle du type
() = Ac* (ag+ % + %) + Ae~* (@ + % + F) + O (). On éerit a = pyei® et
A = pe?. On a donc y(x) = 2Re [pez(“"“)) (poe™ + Lretfr + L26192)] 4 O (). Les
annulations vérifient donc

1

pocos(a:+9+90)+[chos(x+9+91)+zzcos(x+0+92)O(xz)’)

On va ensuite chercher les annulations sous la forme

_ a, e S
rr = km+co + 2 +/€2+O(x3)

On a une asymptotique pour les différentes puissances négatives de x
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z = 71— 55) + Ok,
2 = ez T O(k73).

On pose a; =0+ 0; + ¢o. On a donc

Po COS (ao + C—kl + %) +p1 (;ﬂ_ - kiﬂ) cos (al + %) + kl2072r2 cos (o) = O(k™?)

On utilise ensuite la relation cos(a + b) (pour une fois qu’elle sert & quelque chose !)
et on trouve :

Le terme constant donne ag = 60 + 0y + ¢o = 7/2, d’ott la valeur de cg.

Le terme en 1/k : —pocy 4 2+ cos(a) = 0 ce qui donne la valeur de ¢;.

Le terme en 1/k* donne —pgca — £25° cos(a) — L% sin(a) + 23 cos(az) = 0 ce qui
donne de méme la valeur de cs.

On traite de méme une asymptotique a un nombre quelconque de termes.

Pour la justification des calculs, si les implications directes ne sont pas évidentes, a
savoir ’existence d’une telle asymptotique pour zj, les implications réciproques le
sont, elles. Cela signifie qu’en définissant ainsi x, on a bien des annulations de y.
Comme on sait que zj € [kn, (k + 1)7], ceci justifie donc les calculs (si par exemple
ag > 0) ]
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