
Pseudo-périodicité d’une solution d’une équation différentielle.

On va ici s’intéresser à certaines équations différentielles provenant de celle d’un
cosinus perturbé et ayant une asymptotique presque périodique.

Référence(1)

Résumé.

Un problème classique pour un certain type d’équation différentielle est d’étudier les
annulations d’une solution, dans le cas par exemple de l’équation

y′′(x) + q(x)y(x) = 0

si q est assez positive. Un exemple motivant cet article en sera l’équation

y′′(x) + e2xy(x) = 0

Une méthode classique pour traiter cette question consiste à étudier les solutions
à partir d’un encadrement de la fonction q apparaissant dans l’équation. Ici on va
prendre le problème différemment. On va donner une asymptotique d’une solution, ce
qui permmettra facilement d’en déduire une asymptotique précise de ses annulations.
Dans un premier temps, on va considérer l’équation du cosinus perturbée, à savoir

y′′(x) + (1 + f(x))y(x) = 0

avec f petite en un sens à préciser et on va donner une asymptotique des solutions à
o(1) près.
Puis on traitera l’exemple annoncé de l’équation

y′′(x) + e2xy(x) = 0

Ensuite, on mettra en place des outils permettant de donner une asymptotique à n
termes, en vérifiant sur un exemple simple comment cela se met en place.
Enfin, comme le calcul général est très complexe, on verra comment la connaissance
qualitative d’une telle asymptotique permet de la calculer de façon efective.

1. Un cas simple

On va considérer l’équation

y′′(x) + (1 + f(x))y(x) = 0 (E)

avec f intégrable sur [0,+∞[. On la résout en écrivant y′′ + y = g où g = −fy. On
obtient après calculs

y(x) = a cos(x)+b sin(x)+cos(x)

∫ x

0

f(t)y(t) sin(t) dt−sin(x)

∫ x

0

f(t)y(t) cos(t) dt (I1)
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On va ensuite éviter le lemme de Gronwal. Pour cela, on choisit A > 0
et on pose M = sup

t∈[0,A]

|y(t)| qui est atteint en un certain x. Par (I1) on

a M ≤ |a|+ |b|+ 2M

∫ +∞

0

|f(t)| dt. Quitte à décaler l’origine par transla-

tion, on peut supposer

∫ +∞

0

|f(t)| dt < 1/2 et on en déduit une majoration

de M indépendante de A. Ainsi y est bornée. Mais alors f(t)y(t) sin(t) et

f(t)y(t) cos(t) sont intégrables. Donc

∫ x

0

f(t)y(t) sin(t) dt admet une limite et

s’écrit

∫ x

0

f(t)y(t) sin(t) dt = a′ + o(1), de même pour la deuxième intégrale. On

a donc y(x) = C(cos(x) + o(1)) + D(sin(x) + o(1)). On pourrait en déduire une
asymptotique plus précise en injectant ce résultat dans (I1), ceci sera mis en évidence
plus loin.

2. Exemple

L’équation y′′(t) + e2ty(t) = 0

On pose et = x et on réécrit l’équation en

y′′(x) +
1

x
y′(x) + y(x) = 0

On pose ensuite y(x) = z(x)√
x

et on trouve

z′′(x) +

(
1 +

1

4x2

)
z(x) = 0

La partie précédente donne alors une asymptotique en +∞ qui fournit directement
une asymptotique des annulations de z puis de y :

z(x) = a sin(x+ φ+ o(1))

avec deux constantes a et φ qui dépendent des conditions initiales, et donc la n-ième
annulation est xn = nπ − φ+ o(1), soit pour l’équation titre :

tn = ln(nπ − φ+ o(1))

3. Pour aller plus loin

3.1. Méthode générale. — On va ici reprendre l’équation

y′′(x) + (1 + f(x))y(x) = 0 (E)

et donner des outils en vue d’une asymptotique plus précise. On note

F (x) =

∫ +∞

x

|f(t)| dt
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Pour a ∈ R, Ia(f)(x) =

∫ +∞

x

eiatf(t) dt

- Expression de y.
On va d’abord réécrire les solutions de l’équation

y′′(x) + y(x) = g(x)

où on a posé g = −fy avec f intégrable. On obtient

y(x) = Aeix +Be−ix − ieix

2

∫ +∞

x

f(t)y(t)e−it dt︸ ︷︷ ︸
2iε+(x)

+
ie−ix

2

∫ +∞

x

f(t)y(t)eit dt︸ ︷︷ ︸
−2iε−(x)

(∗)

Ce qui se réécrit

y(x) = (A+ ε+(x))e
ix + (B + ε−(x))e

−ix

L’idée est donc qu’une asymptotique de ε± permet d’avoir un résultat encore
plus précis.

- On départ, on sait seulement ε±(x) = O(F (x)). On écrit alors

ε+(x) = − i

2

∫ +∞

x

f(t)[(A+O(F (t)))eit + (B +O(F (t)))e−it]e−it dt

On a donc

ε+(x) = − i

2

(
AI0(x) +BI−2(x) +O(F 2(x))

)
et de même

ε−(x) =
i

2

(
AI2(x) +BI0(x) +O(F 2(x))

)
- On injecte ensuite ce résultat dans la définition de ε±(x) et on obtient une

meilleure estimation. Le terme d’erreur est cette fois-ci enO

(∫ +∞

x

f(t)F 2(t) dt

)
= O(F 3(x)).

- On réitère le procédé et on peut obtenir une erreur en o(F k(x)).

D’où la proposition suivante :

Proposition 1. — Si on pose p0(x) = q0(x) = 0,

pn+1(x) = − i

2

∫ +∞

x

[(A+ pn(t)) + (B + qn(t))e
−2it]f(t) dt

et

qn+1(x) =
i

2

∫ +∞

x

[(A+ pn(t))e
2it + (B + qn(t))]f(t) dt

alors y(x) = [A+ pn(x)]e
ix + [B + qn(x)]e

−ix +O(Fn+1(x)).
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3.2. Exemple. — On va ici mettre le principe exposé en application dans le cas où
f est une fonction intégrable pour obtenir le type d’asymptotique qu’on peut espérer
pour y. Pour un k-uplet de réels A on définit IA(f)(x) de façon récursive par

Si a ∈ R, Ia =

∫ +∞

x

eiatf(t) dt

Et pour A = (a1, · · · , ak),

IA(f)(x) = I(a1,··· ,ak)(f)(x) =

∫ +∞

x

eia1tf(t)Ia2,··· ,ak
(f)(t) dt = Ia1

(
x 7→ f(x)I(a2,··· ,ak)(x)

)
(x)

On rappelle la relation

y(x) = [A+ pn(x)]e
ix + [B + qn(x)]e

−ix + o(Fn+1(x))

avec F (x) =

∫ +∞

x

|f(t)| dt. On va définir d’autres objets permettant le calcul des

pn, qn.

Définition 1. — On définit deux suites d’ensembles Xn et Yn ainsi que deux suites
de coefficients an et bn définies sur les ensembles Xn et Yn respectivement de la
façon suivante à l’aide des deux constantes A et B telles qu’elles apparaissent dans
la relation (∗) du 3.1:

- X0 = Y0 = ∅.
- Xn+1 = {(0)} ∪ {(−2)} ∪ {(0, xn), xn ∈ Xn} ∪ {(−2, yn), yn ∈ Yn}.
- Yn+1 = {(0)} ∪ {(2)} ∪ {(2, xn), xn ∈ Xn} ∪ {(0, yn), yn ∈ Yn}.
- Pour x ∈ Xn+1 on va définir a(x) selon les cas : an+1((0)) = − iA

2 et

an+1((−2)) = − iB
2 . an+1((0, x)) = − i

2an(x) et an+1((−2, y)) = − i
2bn(y).

- Pour y ∈ Yn+1 on va définir b(x) selon les cas : bn+1((0)) =
iB
2 et bn+1((2)) =

iA
2 . bn+1((2, x)) =

i
2an(x) et bn+1((0, y)) =

i
2bn(y).

On remarquera que les éléments deXn et Yn sont des p-uplets avec p variable. Si par
exemple x = (x1, · · · , xp), la notation (0, x) est abusive, elle désigne (0, x1, · · · , xp).
De même, on notera an(0) en lieu et place de an((0)).

Proposition 2. — Calcul des pn et qn. On dispose des relations pn(t) =
∑
x∈Xn

a(x)IX(f)(t)

et qn(t) =
∑
y∈Yn

b(y)IY (f)(t).

Démonstration. — On procède par récurrence sur n, la realtion étant évidente pour
n = 0. Pour le passage du rang n au rang n + 1, on reprend la proposition 1 qui
affirme

pn+1(x) = − i

2

∫ +∞

x

[(A+ pn(t)) + (B + qn(t))e
−2it]f(t) dt

soit

pn+1(x) = − i

2
AI0(f)(x)−

i

2
BI−2(f)(x)−

i

2

∫ +∞

x

pn(t)f(t) dt−
i

2

∫ +∞

x

qn(t)e
−2itf(t) dt
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On écrit ensuite pn(t) =
∑
x∈Xn

a(x)IX(f)(t), qn(t) =
∑
y∈Yn

b(y)IY (f)(t) et on obtient

pn+1(x) = − i

2
AI0(f)(x)−

i

2
BI−2(f)(x)+

∑
x∈Xn

− i

2
a(x)I(0,x)(f)(x)+

∑
y∈Yn

− i

2
b(y)I(−2,y)(f)(x)

ce qui est la relation annoncée pour pn+1. Celle concernant qn+1 se traite de la même
manière.

Exemple : on va écrire en première ligne les éléments de Xn (resp. Yn) et en
dessous les valeurs de a(x) (resp. b(y)).

n = 0 X0 = Y0 = ∅.

n = 1

(
x

a(x)

)
=

(
0 −2

− iA
2 − iB

2

)
;

(
y

b(y)

)
=

(
0 2
iB
2

iA
2

)
n = 2 (

x
a(x)

)
=

(
0 −2 (0, 0) (0,−2) (−2, 0) (−2, 2)

− iA
2 − iB

2 −A
4 −B

4
B
4

A
4

)
(

y
b(y)

)
=

(
0 2 (2, 0) (2,−2) (0, 0) (0, 2)
iB
2

iA
2

A
4

B
4 −B

4 −A
4

)
L’étude générale de IA(f)(x) ne semble pas aboutir à des résultats simples et expoita-
bles. On va donc renoncer à tenter de donner une formule assez générale quant à une
asymptotique d’une solution de l’équation (E) et se concentrer sur un cas pratique,
avant de voir les effets que donnent ces objets pour une étude théorique.

3.2.1. Le cas n = 2. —

Définition 2. — Fonction α-régulière. Soit α > 0. On dit que f est α-régulière si
∀j ≥ 0, f (j)(x) = o(x−jαf(x)) pour x → +∞.

Dans toute la suite de cet exemle, on prendra f(x) = 1/x2, donc F (x) = 1/x
et f est 1-régulière. L’intérêt de cet exemple est de montrer comment obtenir une
asymptotique précise, même si les calculs sont lourds. On va utiliser les résultats du
paragraphe 3.2. On rappelle donc(

x
a(x)

)
=

(
0 −2 (0, 0) (0,−2) (−2, 0) (−2, 2)

− iA
2 − iB

2 −A
4 −B

4
B
4

A
4

)
(

y
b(y)

)
=

(
0 2 (2, 0) (2,−2) (0, 0) (0, 2)
iB
2

iA
2

A
4

B
4 −B

4 −A
4

)
ainsi que

y(x) = (A+ p2(x))e
ix + (B + q2(x))e

−ix +O(x−3)

On en déduit

p2(x) = − iA

2
I0(f)(x)−

iB

2
I−2(f)(x)−

A

4
I(0,0)(f)(x)−

B

4
I(0,−2)(f)(x)+

B

4
I(−2,0)(f)(x)+

A

4
I(−2,2)(f)(x)

q2(x) =
iB

2
I0(f)(x)+

iA

2
I2(f)(x)+

A

4
I(2,0)(f)(x)+

B

4
I(2,−2)(f)(x)−

B

4
I(0,0)(f)(x)−

A

4
I(0,2)(f)(x)
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On va calculer les valeurs des intégrales I(a,b)(x) qui apparaissent ici. On rappelle

I(a,b)(f)(x) =

∫ +∞

x

eiatf(t)Ib(t) dt = Ia (x 7→ f(x)Ib(x)) (x)

ainsi que par intégration par parties

Ia(f)(x) =
i

ax2
+O(1/x3) si a ̸= 0

et donc

f(x)Ib(x) = O(f2(x)) = O(1/x4) si b ̸= 0

puis

I(a,b)(f)(x) = Ia (x 7→ f(x)Ib(x)) (x) = Ia
(
O(1/x4)

)
= O(1/x3) si b ̸= 0 (même si a = 0)

- On a I0(f)(x) = F (x) = 1/x.
- Pour a ̸= 0, Ia(f)(x) = eiax i

ax2 +O(1/x3).

- Pour a ̸= 0, I(a,0)(f)(x) = Ia (x 7→ f(x)I0(f)) (x) = Ia(x 7→ 1/x3) = O(1/x3).

- I(0,0)(f)(x) = I0 (x 7→ f(x)I0(f)(x)) = I0(x 7→ f(x)F (x)) = F 2(x)
2 = 1

2x2 .

On en déduit

p2(x) = − iA

2x
− Be−2ix

4x2
− A

8x2

q2(x) =
iB

2x
− Ae2ix

4x2
− B

8x2

puis

y(x) =

(
A− A

2x
− Be−2ix

4x2
− A

8x2

)
eix +

(
B +

iB

2x
− Ae2ix

4x2
− B

8x2

)
e−ix +O(1/x3)

On a donc le théorème suivant :

Théorème 1. — Le cas f(x) = 1/x2.
Les solutions de y′′(x) +

(
1 + 1

x2

)
y = 0 sont

y(x) = A

(
1− i

2x
− 3

8x2

)
eix +B

(
1 +

i

2x
− 3

8x2

)
e−ix +O(1/x3)

3.3. Le cas n quelconque. — Dans toute la suite, on supposera avoir F (x) =
O(x−ε) en +∞ avec ε > 0 pour obtenir une asymptotique explicite des solutions de
(E) en O(x−n), mais il serait possible en généralisant de traiter un cas plus large
qui donnerait une asymptotique en séries de x−an pour un a > 0 au lieu de x−n. De
même, on pourrait en généralisant encore donner une asymptotique en O(Fn(x)) ce
qui permettrait de traiter par exemple le cas f(x) = [x ln2(x)]−1. Ceci est laissé au
lecteur. Le point important explicité ici est d’une part de pouvoir donner le type
d’asymptotique qu’on peut espérer pour y (proposition 3 point (iii)), d’autre part de
donner ensuite un moyen d’en faire un calcul explicite (théorème 2).



7

Il est bien sûr très délicat de calculer les objets nécessaires dans un cadre as-
sez général. La méthode formelle mise en évidence démontre que pour l’exemple
f(x) = 1/x2 on peut faire une asymptotique de y à l’ordre n du type

y(x) = P (1/x)eix +Q(1/x)e−ix +O(1/xn)

Mais ceci va être ici généralisé dans un cadre plus vaste, celui des fonctions α-régulière.
Dans tout ce paragraphe on va supposer f α-régulière.

Proposition 3. — Asymptotique de Ia(f)(x).
Soit f une fonction α-régulière.

(i) Pour tout a réel, on a Ia(f
(j))(x) = o(x−jα) en +∞..

(ii) Pour tout a réel, on a Ia(f
(j))(x) =

∑
0≤p≤N

(
i

a

)p+1

eiaxf (p+j)(x) + o(x−(N+1+j)α)

en +∞.
(iii) Si A = (a1, · · · , ak), alors à O(x−Nα) près, on peut exprimer IA(f)(x) comme

le produit de ei(a1+···+ak) par une combinaison linéaire de produits de dérivées
de f en x.

Démonstration. —

(i) Par définition et comme f est α-régulière, Ia(f
(j))(x) = O

(∫ +∞

x

t−jαf(t) dt

)
= o(x−jα)

(en majorant t−jα par x−jα).
(ii) Par intégration par parties, on a

Ia(f
(j))(x) = eiax

∑
0≤p≤N

(
i

a

)p+1

f (p+j)(x) +

(
i

a

)N+1

Ia(f
(N+1+j))(x)

La relation (i) dit que ce terme correctif est en O(x−(N+1+j)α).
(iii) Cela se fait par récurrence sur k, (i) démontrant le cas k = 1. Soit

A = (a1, · · · , ak) = (a1, B). On écrit IA(f)(x) = Ia(x 7→ f(x)IB(f)(x))(x).
Par l’hypothèse de récurrence, on peut exprimer x 7→ f(x)IB(f)(x) comme
ei(a2+···+ak)x fois une combinaison linéaire de produits de dérivées de f à
O(x−Nα) près :

IB(x) = ei(a2+···+ak)x
∑

p,j1,··· ,jp

cp,j1,··· ,jpf
(j1)(x) · · · f (jp)(x) +O(x−Nα)

Pour le calcul de Ia, le terme O(−Nα) donne lieu à Ia(O(x−Nα)f(x)) qui
est en O(x−Nα), et le terme ei(a2+···+ak)xf (j1)(x) · · · f (jp)(x) donne Ia(x 7→
ei(a2+···+ak)xf(x)f (j1)(x) · · · f (jp)(x))(x) . Le point (i) montre alors qu’on peut
en faire une asymptotique à tout ordre avec le type voulu comme résultat (pro-
duit de la bonne exponentielle par des produits de dérivées de f).

Remarques :
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Pour les différents points de la proposition 3, on peut remarquer qu’on peut
démontrer Ia(f

(j))(x) = O(f (j)(x)) si a ̸= 0 par une intégration par parties.
Mais dans la pratique le cas a = 0 apparait très souvent, comme par exemple
pour I(a,−a)(f)(x), ce qui est le cas pour a = ±2 qui a été mis en évidence dans
le paragraphe 3.2. Il vaut donc mieux avoir un résultat valable même dans ce
cas particulier.
L’intérêt de la proposition 3 est d’établir que pour une fonction α-régulière, on
peut faire une évaluation de pn et qn, donc des solutions y de (E), à tout ordre
O(x−n) en +∞.
Du fait du calcul approché de y à l’aide de f , du fait de la dépendance de IA(f)
par rapport à f , la proposition précédente montre que la connaissance de f à
O(h) près donne celle de y également à O(h) près, ce qui n’avait rien d’évident
(stabilité des solutions de l’équation différenteille par rapport aux fonctions
coefficients dans l’équation).
Dans le cas où f et ses dérivées peuvent s’exprimer en +∞ comme des polynômes
en 1/x à O(x−n) près, on en déduit l’asymptotique de y :

y = eixP+(1/x) + e−ixP−(1/x) +O(x−n) pour deux polynômes P+ et P−

Il suffit alors de calculer des valeurs convenables de P+ et P−, sans passer par
les calculs effectifs des ensembles Xn et Yn ainsi que des constantes an(x), bn(y)
et surtout Ic(f)(x) avec c ∈ Xn ∪Yn. Ceci est le but de la proposition suivante.

Théorème 2. — Calcul effectif des solutions approchées.
On suppose f α-régulière et intégrable sur R+ ayant une asymptotique en 1/x en +∞
du type f(x) = H(1/x) + O(x−n) avec H polynôme (ce qui veut donc dire H(0) =
H ′(0) = 0). Alors les solutions de

y′′(x) + (1 + f(x))y(x) = 0

sont

y(x) = eixP+(1/x) + e−ixP−(1/x) +O(x−n)

où P±(X) vérifient

X4P ′′(X) + 2X2(X ∓ i)P ′(X) +H(X)P (X) est divisible par Xn

Démonstration. — Traitons le cas du signe +, soit y(x) = eixφ(x). On sait que
y(x) = eixP+(1/x) + O(x−n). Du fait de l’asymptotique de f en +∞, ceci qui
donne y′′(x) = eixP1(1/x) + O(x−n) pour un polynôme P1. Par intégration par

parties,

∫ +∞

x

eit
dt

tp
s’écrit également eixQ(1/x)+O(x−n). Ainsi on en déduit y(x) =

eixR(1/x) + O(x−n) avec cette fois-ci la possibilité de dériver l’asymptotique. Donc[
eixR(1/x)

]′′
+ (1 +H(1/x))eixR(1/x) = O(x−n), ce qui donne après calculs

X4P ′′(X) + 2X2(X ∓ 2i)P ′(X) +H(X)P (X) = O(Xn)

comme espéré. On traite de même le cas du signe −.
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Signalons pour terminer que cette équation est très facile à résoudre puisqu’elle donne
lieu à un système linéaire triangulaire.

À titre d’exemple, pour f(x) = 1
x2−3x+1 , on trouve

P+(X) = 1− i

2
X−

(
3

8
+

3i

4

)
X2−

(
9

8
+

43i

48

)
X3−

(
859

384
+

21i

32

)
X4+

(
−211

64
+

6829i

1280

)
X5

et

P−(X) = 1+
i

2
X+

(
−3

8
+

3i

4

)
X2+

(
−9

8
+

43i

48

)
X3+

(
−859

384
+

21i

32

)
X4−

(
211

64
+

6829i

1280

)
X5

et enfin les solutions de

y′′(x) +

(
1 +

1

x2 − 3x+ 1

)
y = 0

qui sont

y(x) = AeixP+

(
1

x

)
+Be−ixP−

(
1

x

)
+O

(
1

x6

)
3.4. Annulations. — On va ici donner comme sous-produit de l’étude asmypto-
tique le calcul des annulations dans le contexte du théorème 2. On va noter xk de
telles annulations. Il est évident que comme les hypothèses sur l’équation (E) ne sont
que asymptotiques, on ne peut être certain de la numérotation des annulations. En
clair, cela signifie que ce qui est noté xk pourrait l’être xk+k0

.

Théorème 3. — On reprend les hypothèses du théorème 2, à savoir f α-régulière
et intégrable sur R+ ayant une asymptotique en 1/x en +∞ du type f(x) = H(1/x)+
O(x−n) avec H polynôme (ce qui veut donc dire H(0) = H ′(0) = 0). Alors les
solutions réelles de

y′′(x) + (1 + f(x))y(x) = 0

ont des annulations

xk = kπ + c0 + · · ·+ cn−1

kn−1
+O

(
1

kn

)
Démonstration. — Plutôt que de traiter le cas général n quelconque qui serait fasti-
dieux, on va traiter le cas n = 3. On suppose donc avoir une solution réelle du type
y(x) = Aeix

(
a0 +

a1

x + a2

x2

)
+ Ae−ix(a0 +

a1

x + a2

x2 ) +O
(

1
x3

)
. On écrit aj = ρje

iθj et

A = ρeiθ. On a donc y(x) = 2Re
[
ρei(x+θ)

(
ρ0e

iθ0 + ρ1

x eiθ1 + ρ2

x2 e
iθ2

)]
+ O

(
1
x3

)
. Les

annulations vérifient donc

ρ0 cos(x+ θ + θ0) +
ρ1
x

cos(x+ θ + θ1) +
ρ2
x2

cos(x+ θ + θ2) = O

(
1

x3

)
On va ensuite chercher les annulations sous la forme

xk = kπ + c0 +
c1
k

+
c2
k2

+O

(
1

x3

)
On a une asymptotique pour les différentes puissances négatives de x
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1
x = 1

kπ (1−
c0
kπ ) +O(k−3).

1
x2 = 1

k2π2 +O(k−3).

On pose αi = θ + θi + c0. On a donc

ρ0 cos
(
α0 +

c1
k

+
c2
k2

)
+ ρ1

(
1

kπ
− c0

k2π2

)
cos

(
α1 +

c1
k

)
+

ρ2
k2π2

cos (α2) = O(k−3)

On utilise ensuite la relation cos(a+ b) (pour une fois qu’elle sert à quelque chose !)
et on trouve :
Le terme constant donne α0 = θ + θ0 + c0 = π/2, d’où la valeur de c0.
Le terme en 1/k : −ρ0c1 +

ρ1

π cos(α0) = 0 ce qui donne la valeur de c1.

Le terme en 1/k2 donne −ρ0c2 − ρ1c0
π2 cos(α1) − ρ1c1

π sin(α1) +
ρ2

π2 cos(α2) = 0 ce qui
donne de même la valeur de c2.
On traite de même une asymptotique à un nombre quelconque de termes.
Pour la justification des calculs, si les implications directes ne sont pas évidentes, à
savoir l’existence d’une telle asymptotique pour xk, les implications réciproques le
sont, elles. Cela signifie qu’en définissant ainsi xk, on a bien des annulations de y.
Comme on sait que xk ∈ [kπ, (k + 1)π], ceci justifie donc les calculs (si par exemple
a0 > 0).
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